Artificial Intelligence

Lecture Knowledge Representation Propositional Logic

Knowledge Representation and Reasoning

Intelligent agents should have capacity for:

- **Perceiving**, that is, acquiring information from environment.
- **Knowledge Representation**, that is, representing its understanding of the world.
- **Reasoning**, that is, inferring the implications of what it knows and of the choices it has, and
- Acting, that is, choosing what it want to do and carry it out.

Knowledge and Intelligent

Knowledge Representation and Reasoning

Scripts

Logic is a Formal Language

Proposition: Anything that we use in our day to day statement

Elements of propositional logic

- Rajiv is intelligent.
- Rajiv is hardworking.

- Rajiv is intelligent.
- Rajiv is hardworking.

Propositions

Also Intelligent-Rajiv can be proposition.

A proposition (Statement) can be true or false.

• Logic

- is the study of the logic <u>relationships</u> between <u>objects</u> and
- ^o forms the basis of all mathematical reasoning and all automated reasoning

Towards the syntax

- Let P stand for "Rajiv is intelligent"
- Let Q stand for "Rajiv is hardworking"

- What does $P \land Q$ (P and Q) mean?
- What does $P \lor Q$ ($P \underline{or} Q$) mean?
- $\mathbf{P} \land \mathbf{Q}, \mathbf{P} \lor \mathbf{Q}$ are compound proposition

Propositional Logic

• In **propositional logic (PL)** an user defines a set of propositional symbols, like *P* and

Q. User defines the semantics of each of these symbols. For example,

- P means "It is hot"
- Q means "It is humid"
- R means "It is raining"
- Set of logical operators

\bigwedge	and	[conjunction]
\vee	or	[disjunction]
\rightarrow	implies	[implication / conditional]
\leftrightarrow	is equivalent	[bi-conditional]
	not	[negation]

• Logical Constant: TRUE (T) and FALSE (F)

What is Propositional Logic?

- 1. Sometimes it is called "Sentential Logic" or "Statement Logic"
- Deals with logical relationship between propositions (statements, Sentences, assertions, ...) taken as whole

P = Rajiv is intelligent

Propositional logic is interested in how the truth value of
"<u>compound claims</u>" depends on the truth value of the individual claims.

4. Basic compound claims

P and Q P or Q If P then Q not-P

Well-formed formula (wff)

- A **sentence** (also called a formula or well-formed formula or wff) is defined as:
 - $_{\circ}~$ Each symbol (a proposition or a constant) is a sentence
 - $_{\circ}~$ If S is a sentence and T is a sentence, then
 - (S) is a sentence
 - $\neg S$ is a sentence
 - (S \lor T) is a sentence
 - (S \wedge T) is a sentence
 - $(S \rightarrow T)$ is a sentence

Example wffs

- P
- True
- $\mathbf{P} \wedge \mathbf{Q}$
- (P \lor Q) \rightarrow R
- (P \land Q) \lor R \rightarrow S
- $\neg(P \lor Q)$
- $\neg (P \lor Q) \rightarrow R \land S$

<u>Logical Connective: Logical And</u> (\land)

<u>Connective</u>: Conjunction (symbol Λ)

The logical connective And is true only when both of the propositions are true. It is also called a <u>conjunction</u>

	Р	Q	P∧Q
	Т	Т	Т
Truth table	Т	F	F
	F	Т	F
	F	F	F

<u>Logical Connective: Logical Or</u> (\vee)

<u>Connective</u>: Disjunction (symbol V)

The logical <u>disjunction</u>, or logical Or, is true if one or both of the propositions are true.

	Р	Q	₽VQ
2	Т	Т	Т
	Т	F	Т
	F	Т	Т
	F	F	F

Truth table

Logical Connective: Negation (¬)

 $\neg p$, the negation of a proposition *p*, is also a proposition

Truth table

Р	¬P
Т	F
F	Т

Implication \rightarrow

<u>Connective</u>: Implication (symbol \rightarrow)

- **Definition:** Let p and q be two propositions. The implication $p \rightarrow q$ is the proposition that is false when p is true and q is false and true otherwise
 - $_{\circ}~p$ is called the hypothesis, antecedent, premise
 - $\circ \, q$ is called the conclusion, consequence

p is a sufficient condition for *q* (*p* is sufficient for *q*) *q* is a necessary condition for *p* (*q* is necessary for *p*)

Example: Implication \rightarrow

- "If A then B" is false when A is true and B is false, and it is true otherwise.
- Note: A → B is true if A is false, regardless of the truth of B
- Example: If Ms. X passes the exam, then she will get the job
- Here B is She will get the job and A is Ms. X passes the exam.
- The statement states that Ms. X will get the job **if** a certain condition (passing the exam) is met; it says nothing about what will happen if the condition is not met. If the condition is not met, the truth of the conclusion cannot be determined; the conditional statement is therefore considered to be vacuously true, or true by default.

Truth tables

If then		
р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

P \Box q can be written as (¬p \lor q)

Example

- P means "It is hot"
- Q means "It is humid"
- R means "It is raining"

Examples of PL sentences:

- $_{\circ}~(P~\wedge~Q) \rightarrow R$ (here meaning "If it is hot and humid, then it is raining")
- $_{\circ}~~Q \rightarrow P$ (here meaning "If it is humid, then it is hot")

Equivalence \leftrightarrow

<u>Connective</u>: Equivalence (symbol \leftrightarrow)

 $p \leftrightarrow q$ is the proposition that is true when p and q have the same truth values. It is false otherwise.

- $P \leftrightarrow Q$
- It is true if both A and B have the same truth values.
- It is false if A and B have opposite truth values.

Example:

- If two sides of a triangle are equal then two base angles of the triangle are equal.
- Can be represented as two sentences:
 - (P \rightarrow Q) \land (Q \rightarrow P)

 $\textbf{P} \leftrightarrow \textbf{Q}$

Р	Q	P→Q	Q→P	$(\mathbf{P} \rightarrow \mathbf{Q}) \land (\mathbf{Q} \rightarrow \mathbf{P})$
				P↔Q
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

What does a wff mean

- Interpretation in a world
- When we interpret a sentence in a **world** we assign meaning to it and it evaluates to either "TRUE" or "FALSE"

So how do we get the meaning?

- Sentence can be compound proposition
- Interpret each atomic proposition in the same worlds
- Assign truth values to each interpretation
- Compute the truth value of the compound

proposition

Example

- P: Rajiv likes Avijit
- Q: Ram knows Suman
- World: Rajiv and Avijit are friends and Ram and Suman are known to each other.
- P = T, Q = T
- $\mathbf{P} \wedge \mathbf{Q} = ?$
- P ∧(¬ Q)=?

Question

- If P is true and Q is true, then are the following true or false?
 - P□Q
 - (¬ P \lor Q) \Box Q
 - $(\neg P \lor Q) \Box P$

Tautology and Contradiction

- Letters like P, Q, R, S etc. are used for representing wffs
 - $[(A V B) \land C'] \rightarrow A' V C$ can be represented by $P \rightarrow Q$ where
 - P is the wff $[(A V B) \Lambda C']$ and Q represents A' V C
- Definition of tautology:
- A wff that is intrinsically true, i.e. no matter what the truth value of the statements that comprise the wff.
 - e.g. It will rain today or it will not rain today (A V A')
 - $P \leftrightarrow Q$ where P is $A \rightarrow B$ and Q is A' V B
- Definition of a contradiction:
- A wff that is intrinsically false, i.e. no matter what the truth value of the statements that comprise the wff.
 - e.g. It will rain today and it will not rain today (A A A')
 - (A Λ B) Λ A'
- Usually, tautology is represented by 1 and contradiction by 0

Questions

- Express the following English Statements in the language of propositional logic:
 - It rains in July
 - If it rains today and Ram does not carry umbrella he will be drenched.

Thank You!

Any Questions?